
Classes, Objects & References

Nathaniel Osgood
MIT 15.879

March 14, 2012

What is a Class?
• A class is like a mould in which we can cast particular

objects
– From a single mould, we can create many “objects”
– These objects may have some variation, but all share certain

characteristics – such as their behaviour
• This is similar to how objects cast by a mold can differ in many

regards, but share the shape imposed by the mould

• In object oriented programming, we define a class at
“development time”, and then often create multiple
objects from it at “runtime”
– These objects will differ in lots of (parameterized) details, but

will share their fundamental behaviors
– Only the class exists at development time

• Classes define an interface, but also provide an
implementation of that interface (code and data fields
that allow them to realized the required behaviour)

Recall: A Critical Distinction:
Design (Specification) vs. Execution (Run) times

• The computational elements of Anylogic support
both design & execution time presence & behaviour

– Design time: Specifying the model

– Execution time (“Runtime”): Simulating the model

• It is important to be clear on what behavior &
information is associated with which times

• Generally speaking, design-time elements (e.g. in
the palettes) are created to support certain runtime
behaviors

Recall: A Familiar Analogy

• The distinction between model design time & model
execution time is like the distinction between

– Time of Recipe Design: Here, we’re

• Deciding what exact set of steps we’ll be following

• Picking our ingredients

• Deciding our preparation techniques

• Choosing/making our cooking utensils (e.g. a cookie cutter)

– Time of Cooking: When we actually are following the
recipe

• A given element of the recipe may be enacted many times
– One step may be repeated many times

– One cookie cutter may make many particular cookies

Cooking Analogy to an Agent Class:
A Cookie Cutter

• We only need one cookie cutter to bake many
cookies

• By carefully designing the cookie cutter, we can
shape the character of many particular cookies

• By describing an Agent class at model design time,
we are defining the cookie cutter we want to use

Familiar Classes in AnyLogic

• Main class

• Person class

• Simulation class

Work Frequently Done with Objects

• Reading “fields” (variables within the object)

• Setting fields

• Calling methods

– To compute something (a “query”)

– To perform some task (a “command”)

• Creating the objects

“Methods” to Call on (or from within,
using “this”) an Agent

• a.getConnectionsNumber() returns number of
connections between this agent and others

• a.toString() gets string rendition of agent
• a.getConnections() gets a collection (linked) list of

agents to which this agent is connected (& over
which we can iterate)

• a.connectTo(Agent b) connects a to b
• a.disconnectFrom(Agent b) disconnects b from a
• a.disconnectFromAll() disconnects all agents from a
• a.getConnectedAgent(int i) gets the ith agent

connected to a
• a.isConnectedTo(Agent b) indicates if a is connected

to b

Finding the Enclosing “Main” class
from an Embedded Agent

• From within an embedded Agent, one can find
the enclosing “Main” class by calling get_Main()

– This will give a reference to the single instance
(object) of the Main class in which the agent is
embedded

– An alternative approach is to call ((Main) getOwner())

Composition of Methods

• Suppose we have an agent called a

• a.getConnectedAgent(2).toString()
– This will print out the “name” of the 3rd agent to

which a is connected

• a.getConnectedAgent(0).getConnectionsNum
ber()
– This will print out the number of connections

possessed by the 1st agent to which a is connected

Distinction between Class and Object

• Sometimes we want information or actions that
only relates to the class, rather than to the objects
in the class

– Conceptually, these things relate to the mould, rather
than to the objects produced by the mould

– For example, this information may specify general
information that is true regardless of the state of an
individual object (e.g. agent)

– We will generally declare such information or actions
to be “static” (e.g. static methods, static variables)

Example “Static” (Non-Object-Specific) Method

Values & References

• In Java, variables hold values

– It is the contents of these variables that is of interest –
variables themselves just store values

• There are many types of variables could be

– Parameters to a function

– “Local” (temporary) variables within a function

– Variables within a class (to be found in every object that
is “instantiated” from that class

– “Static” variables associated with a class (only one
variable associated with the class – no how many objects
of the class are circulating)

Broad Types of Java Values

• “Primitive” values

– Here, the value is directly stored in the variable

• int, double, float, etc.

• References

– Here, the value within the variable actually points
to either

• An object (could have many other references to it as
well!)

• A distinguished value “null” (means “doesn’t refer to
any object”)

Objects in Java

• Contain

– Data: “Fields”, “Property”

• These store information

– Behavior: “Methods”/”Functions”

• These allow the object to undertake certain
 tasks

fieldA [type:int]: 4
fieldB [type:doube]: 2.1

 a

fieldA [type:int]: 4
fieldB [type:String]:

fieldC [type:MyClass2]:

Object can contain References to Other Objects

a

 “foo”

 fieldW [type:double]: 3.2

fieldY[type:int]: 2

“this” Variable
• Within an agent’s method execution, the

variable “this” refers to the current agent

Income: 34,526
age[type:double]: 4.2
sex [type:Sex]: Male

 this

 Main
Object

this.get_Main()
Returns this reference

(Sole Instance of Main
Class)

A Particular Person (Instance of Person Class)

 Person B

this.getConnectedAgent(0)
Returns this reference

 Person C
 Person C

this.getConnectedAgent(1)
Returns this reference

this.getConnectedAgent(2)
Returns this reference

Hands on Model Use Ahead

Load provided Model:
ABMModelWithBirthDeath.alp

Code to Perform Birth

Establishing Baby’s Connection
Looping over Connections

Setting Offspring Location

Finding the Enclosing “Main” class
from an Embedded Agent

• From within an embedded Agent, one can find
the enclosing “Main” class by calling get_Main()

– This will give a reference to the single instance
(object) of the Main class in which the agent is
embedded

– An alternative approach is to call ((Main) getOwner)

Reference from Agent Class to Main Object

age[type:double]: 4.2
sex [type:Sex]: Male

 a

 Main
Object

this.get_Main()
Returns this reference

(Sole Instance of Main
Class)

A Particular Person (Instance of Person Class)

Assignment
• Consider two variables a and b that hold values

• Consider further the statement a=b

• How this is interpreted depends on the “type” of b

– If b is a “primitive” (e.g. int, double): Here, the
assignment will make a copy of that value

Before: a: 2, b: 4

 After: a:4, b:4

– If b holds a reference to an object, a will now hold a
reference to that same object

 After:

field: 4
a

b

Assignment
– If the programmer later modifies that object through a

that same change will be visible through b as well

•Before

•Assignment to a “field” (property”) of the object through

variable a

a.field=3

•After

field:3

a

b

field: 4
a

b

References Vs. Values

• The “type” of a variable indicates the sort of
data to which it can refer

• Looking at a variable’s type will tell you much
about how it can be used

– Whether primitive or reference

– Sort of operations that are possible on the data it
holds

Arrays

• Java supports collections called “Arrays”

– These store collections of values in an “indexed”
fashion

• By giving an “index”, we can get back an element

• These arrays can be of 1 or more “dimensions”

– An array of dimension 2 is just a (1D) array of
references to (1D) arrays

Example: Landscape Information

Good Models to Examine for Better
Software Engineering Elements

• ABMClinicModelV7

• ABMModelWithBirthDeath

